Econ 802

Final Exam

Greg Dow

December 15, 2009

Read each question carefully and try to use all of the information provided. All questions have equal weight. If something is unclear, please ask.

- 1. A firm has a strictly convex production possibilities set $Y \subset R^n$. For a production plan $y = (y_1 \dots y_n) \in Y$, outputs are indicated by positive numbers and inputs are indicated by negative numbers.
- (a) Prove that if the firm's profit maximization problem has a solution for the price vector p > 0, this solution is unique.
- (b) Prove that if the firm's profit maximization problem has a unique solution y(p) for each p > 0, the profit function $\pi(p) = py(p)$ is convex.
- (c) In period t = 1, the price vector is $p^1 > 0$ and the production plan is y^1 . In period t = 2, the price vector is $p^2 > 0$ and the production plan is y^2 . Let $\Delta p = p^2 p^1$ and $\Delta y = y^2 y^1$. Prove that $\Delta p \Delta y \ge 0$ and interpret this result in words.
- 2. Consider the short run cost function $c(w, y) = w_f x_f + w_v x_v$ where $w = (w_1 ... w_n) = (w_f, w_v) > 0$. The subvector w_f gives the prices of the fixed inputs $x_f > 0$ and the subvector w_v gives the prices of the variable inputs $x_v \ge 0$ (the x_v inputs are chosen optimally). The output y > 0 is a scalar and the production function is $y = f(x_f, x_v)$.
- (a) Use calculus to prove that when short run average cost is a <u>decreasing</u> function of output, marginal cost is <u>less</u> than average cost, and when short run average cost is an <u>increasing</u> function of output, marginal cost is <u>greater</u> than average cost.
- (b) Suppose the production function is $y = \sum_{i=1...n} a_i x_i$ where all $a_i > 0$. For a given y > 0, use Kuhn-Tucker multipliers to describe the set of variable inputs that could be used at a positive level, and the set of variable inputs that would definitely be equal to zero. Note: assume that the fixed inputs are not large enough to produce y, so variable inputs must be used.
- (c) For the production function from (b), draw a graph with output on the horizontal axis and show the <u>short run</u> curves for average fixed cost, average variable cost, average total cost, and marginal cost. On a separate graph, indicate the shape of the <u>long run</u> average and marginal cost curves. Briefly justify your answers.

- 3. Consider the utility function $u = a \ln x_1 + b \ln x_2$ where a > 0 and b > 0.
- (a) Compute the Marshallian demands x(p, m) and the indirect utility function v(p, m).
- (b) Compute the Hicksian demands h(p, u) and the expenditure function e(p, u).
- (c) Suppose a and b are both multiplied by the same constant t > 0. Does this affect the Marshallian demands? The Hicksian demands? Give an economic interpretation.
- 4. Each consumer i = 1 ... n has a utility function $u_i = y_i + \ln x_i$ where y_i is leisure and x_i is widget consumption. Each consumer is endowed with T units of time but has a zero endowment of widgets. The budget constraint is $px_i = w(T y_i)$ where p is the price of widgets and w is the wage rate.
- (a) Find consumer i's demand for widgets $x_i(p, w)$ as a function of the prices. What is the market demand function for widgets X(p, w)?
- (b) To produce z_j widgets in the long run, a firm j requires $c(z_j)$ units of labor, where c(0) = 0 and $c(z_j) = F + z_j^2$ for $z_j > 0$. F > 0 is the cost of setting up a firm. What is the supply function $z_j(p, w)$ for a typical firm j?
- (c) Let labor be the numeraire so w = 1. Assume there is free entry and all firms are identical. Also assume that when the firms have zero profit, the number of firms is an integer. Using a graph, explain how you would derive the long run equilibrium price and quantity of widgets, as well as the equilibrium number of firms.
- 5. Asha and Ben have utility functions $u_A = \min \{x_{A1}, x_{A2}\}$ and $u_B = \min \{x_{B1}, x_{B2}\}$. The aggregate endowments are $w_1 = 3$ and $w_2 = 2$. There is no production.
- (a) Draw an Edgeworth box and label the axes. Show a few indifference curves for each person and show the set of Pareto efficient points. Explain your reasoning.
- (b) Suppose the individual endowments are $w_A = (1, 1)$ and $w_B = (2, 1)$. Derive the aggregate excess demand functions $z_1(p)$ and $z_2(p)$. If supply equals demand for good 1, what is true about p_2 ? If supply equals demand for good 2, what is true about p_1 ? Explain the reason for these unusual results.
- (c) Assume the individual endowments are the same as in (b) and use an Edgeworth box to determine whether a Walrasian equilibrium (WE) exists. If there is a WE, describe an equilibrium price vector and allocation. If there is no WE, say why not. In either case, give a detailed justification for your answer.